IX9907
Design Considerations
1 Introduction

This application note provides general guidelines for designing an off-line LED driver using IXYS Integrated Circuits Division’s IX9907. The IX9907 integrates a very efficient internal power MOSFET, which greatly simplifies the design of a quasi-resonant flyback converter driver that provides a constant current output to an LED string while maintaining a high power factor.

The IX9907 includes multiple safety features such as under-voltage lockout, over-voltage protection, over-temperature protection, digital soft-start, foldback correction, and cycle-by-cycle peak current limiting. This driver is an excellent choice for many phase-cut dimming and high power factor correction LED lighting applications demanding compact design.

Figure 1 IX9907 Block Diagram
1.1 LED Driver Specifications

The following equations and component selections are based on the following LED driver specifications:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input Voltage</td>
<td>V_{AC_min}</td>
<td>90</td>
<td>V_{rms}</td>
</tr>
<tr>
<td>Minimum Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC Input Voltage</td>
<td>V_{AC_max}</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Maximum Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC Input Frequency</td>
<td>f_{AC}</td>
<td>60</td>
<td>Hz</td>
</tr>
<tr>
<td>Auxiliary Voltage</td>
<td>V_{aux_max}</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Auxiliary Current</td>
<td>I_{aux_max}</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>LED String Voltage</td>
<td>V_{LED_string}</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>LED String Current</td>
<td>I_{LED_max}</td>
<td>500</td>
<td>mA</td>
</tr>
<tr>
<td>Estimated Efficiency</td>
<td>\eta</td>
<td>85</td>
<td>%</td>
</tr>
<tr>
<td>Oscillator Frequency</td>
<td>f_{S}</td>
<td>67</td>
<td>kHz</td>
</tr>
<tr>
<td>Power Factor</td>
<td>PF</td>
<td>98</td>
<td>%</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td>D_{max}</td>
<td>50</td>
<td>%</td>
</tr>
</tbody>
</table>
2 Component Selection

2.1 DC Bulk Voltage at Low and High Line

\[V_{\text{DC_bulk_min}} = \sqrt{2} \cdot V_{\text{AC_min}} = \sqrt{2} \cdot 90V_{\text{AC}} \approx 127.3V \]
\[V_{\text{DC_bulk_max}} = \sqrt{2} \cdot V_{\text{AC_max}} = \sqrt{2} \cdot 135V_{\text{AC}} \approx 191V \]

2.2 Output Power Calculation

\[P_{\text{out}} = V_{\text{LED_string}} \cdot I_{\text{LED_max}} \]
\[P_{\text{out}} = 20V \cdot 500mA = 10W \]

2.3 Input Power Calculation

\[P_{\text{in}} = \frac{P_{\text{out}}}{\eta \cdot PF} \]
\[P_{\text{in}} = \frac{10W}{0.85 \cdot 0.98} \approx 12W \]

2.4 Primary Inductor Currents Calculation

\[I_{\text{pri_peak}} = \frac{\sqrt{2} \cdot V_{\text{AC_min}} \cdot D_{\text{max}}}{L_{\text{pri}} \cdot f_S} \]
\[I_{\text{pri_peak}} = \frac{127.3V \cdot 0.5}{1.82mH \cdot 67kHz} \approx 0.522A_{\text{peak}} \]

For \(L_{\text{pri}} \), see 3.1 Primary Inductance Calculation.

\[I_{\text{rms}} = I_{\text{pri_peak}} \cdot \sqrt{\frac{D_{\text{max}}}{3}} \]
\[I_{\text{rms}} = 0.522A_{\text{peak}} \cdot \sqrt{\frac{0.5}{3}} \approx 0.213A_{\text{rms}} \]

Note that duty cycle above 50% will result in converter stability issues such as sub-harmonic oscillations.

2.5 Reflected Flyback Voltage Calculation

\[V_{\text{ro}} = V_{\text{LED_string}} + V_f = 20V + 0.7V \cdot 0.1626 \approx 127V \]

See 3.2 Determine Transformer Turns Ratio for \(N_S/N_P \) ratio.

2.6 Input Capacitor, \(C_{\text{IN}} \)

The IX9907 is designed to operate without the need of a large bulk capacitor. This operating method enables the input current to form a triangular shape that closely follows the rectified AC line voltage, enabling a very high power factor of up to 98% with low total harmonic distortion (THD).

A small, 0.1\(\mu \)F, 400V polyester film filter capacitor should be adequate for this application.

2.7 Input Rectifier Bridge

The breakdown voltage for this bridge is based on the maximum input voltage.

\[V_{\text{bridge}} = \sqrt{2} \cdot 135V_{\text{AC}} \cdot 2 \approx 382V \]

Select the next higher standard voltage, 400V.

The rectifier bridge is exposed to high surge currents, so select a bridge that can handle at least five times the \(I_{\text{rms}} \) input current. In this case, a 1A bridge would be sufficient.

2.8 Calculate MOSFET Voltage Rating

The internal power MOSFET is rated at 650V, 2\(\Omega \), so care should be taken not to exceed maximum rating.

Maximum \(V_{\text{ds}} \) can be approximated as follows:

\[V_{\text{ds}} = V_{\text{dc_bulk_max}} + V_{\text{ro}} + V_{\text{spike}} \]
\[V_{\text{ds}} = 191V + 127V + 50V \]
\[V_{\text{ds}} = 368V \]

In cases where calculated \(V_{\text{ds}} \) is very close to 650V, and where more margin is desired, reducing reflecting flyback voltage by lowering duty cycle may be one solution. In some cases, reduction of transformer leakage inductance can lower inductive spikes.

The IX9907 internal power MOSFET has an effective output capacitance, \(C_{\text{O\(\text{er} \)}}=22pF \) plus an additional 44pF due to external components, and an \(R_{\text{ds\(\text{on} \)}} \) of 4\(\Omega \) maximum at \(T_J=125^\circ C \). Calculate switching and conduction losses with this formula:

\[P_{\text{SW}} = 0.5 \cdot C_{\text{O\(\text{er} \)}} \cdot V_{\text{dc_bulk_min}}^2 \cdot f_{\text{SW}} \]
\[P_{\text{SW}} = 0.5 \cdot 66pF \cdot 127.3^2 \cdot 67kHz \]
\[P_{\text{SW}} = 35.83mW \]

Conduction losses can be calculated:

\[P_{\text{con}} = \frac{1}{3} \cdot R_{\text{ds\(\text{on} \)}} \cdot I_{\text{pri_peak}}^2 \cdot D_{\text{max}} \]
\[P_{\text{con}} = \frac{1}{3} \cdot 4\Omega \cdot I_{\text{pri_peak}}^2 \cdot 0.5 \]
\[P_{\text{con}} = 182mW \]

Total Power Loss = \(P_{\text{SW}} + P_{\text{con}} \)

Total Power Loss = 217.83mW
The IX9907 data sheet lists Θ_{JA} as 125°C/W; therefore the temperature rise due to the power MOSFET can be estimated. In this case $T_A=50°C$.

$$T_j = (217.83mW \cdot 125°C/W) + 50°C$$

$T_j = 77.23°C$

2.9 Design RCD Snubber

In a flyback topology, a snubber circuit is required to clamp the voltage caused by the leakage inductance, which is present in all transformers. Leakage inductance is highly dependent on the transformer construction, so care should be taken to keep it less than 2% of primary inductance. When no leakage inductance is known, a leakage inductance value of 37μH (2% of 1.82mH) can be used as a starting point to calculate the snubber’s resistor, capacitor, and diode values.

D_{SN} is selected as 1N4007GP (1000V, 1A axial lead).

Energy stored in the leakage inductance L_e:

$$W1 = 0.5L_eI_{rms}^2 = 0.5 \cdot 37\mu H \cdot 0.213^2 \approx 0.84\mu J$$

Average power transferred from W1 to the snubber:

$$P1 = W1 \cdot f_S = 0.84\mu J \cdot 67kHz \approx 56mW$$

$$V_{max} = V_{DC_{bulk max}} + V_{ro} + V_{spike}$$

$$V_{max} = 191V + 127V + 50V = 368V$$

- $V_{spike} = 50V$
- $V_{ro} = 127V$

Limiting the voltage to 368V.

$$V_{SN} = 368V - 127V = 241V$$

$$R_{SN} = \frac{V_{SN}^2}{P1} = \frac{241V^2}{0.056W} \approx 1M\Omega$$

$$C_{SN} = \frac{T_S}{R_{SN}} = \frac{15\mu s}{1M\Omega} = 0.015nF$$

$$C_{SN} \cdot \frac{T_S}{R_{SN}} = \frac{1}{f_S \cdot R_{SN}} = \frac{1}{67kHz \cdot 1M\Omega} \approx 15pF$$

For margin, $C_{SN} = 1nF$ is selected. This value is a starting point, and might have to be adjusted to get the desired voltage spike suppression.

2.10 Over-Voltage Protection & Zero-Crossing Detection

The application schematic in Figure 2 IX9907 Application Circuit shows that the voltage from the auxiliary winding is connected to the zero crossing pin (ZCV), via RC network resistor R_{ZCV1}, R_{ZCV2} and C_{ZCV}. The circuit provides a delay so that switch-on can occur at the voltage valley, thus enhancing efficiency. The line voltage is sensed indirectly through the current in R_{ZCV1}.

The current equation is given by:

$$I_{ZCV} = \frac{V_{DC_{bulk min}} \cdot N_A}{R_{ZCV1} \cdot N_P}$$

Solving for R_{ZCV1}:

$$R_{ZCV1} = \frac{V_{DC_{bulk min}} \cdot N_A}{I_{ZCV} \cdot N_P}$$

From the V_{CS} vs. I_{ZCV} graph below we select $I_{ZCV} = 1000\mu A$ as the recommended current. For N_A/N_P value, see 3.2 Determine Transformer Turns Ratio.

$$R_{ZCV1} = \frac{127.3V}{0.0014} \approx 18.7k\Omega$$

Figure 3 V_{CS} vs. I_{ZCV}

The over voltage detection can be programmed by R_{ZCV2} resistor. The output, $V_{LED_{string}}$, is 20V, so select an over voltage protection of 35V, and from the datasheet, $V_{ZCV_{OVP}} = 3.7V$

$$R_{ZCV2} = \frac{R_{ZCV1} \cdot V_{ZCV_{OVP}}}{V_{ZCV_{OVP}} - V_{ZCV_{OVP}}}$$

$$R_{ZCV2} = \frac{18.7k\Omega \cdot 3.7V}{35V - 3.7V} \approx 2.21k\Omega$$
The delay capacitor can be approximated:
\[
C_{ZCV} = \frac{t_{RC} \cdot R_{ZCV1} + R_{ZCV2}}{R_{ZC1} \cdot R_{ZC2}}
\]
\[
C_{ZCV} = 1\,\mu\text{s} \cdot \left(\frac{18.7\,\Omega + 2.210\,\Omega}{18.7\,\Omega \cdot 2.210\,\Omega}\right) \approx 519\,pF
\]
Where \(t_{RC} = 1\,\mu\text{s}\) (see IX9907 data sheet).

2.11 Primary Peak Current Control

The value of the current sense resistor \(R_{CS}\) can be selected by using the following equation:
\[
R_{CS} = \frac{V_{CS_{\text{max}}}}{I_{\text{pri}_{\text{peak}}}}
\]
\[
R_{CS} = \frac{0.75\,V}{0.522\,A_{\text{peak}}} \approx 1.44\,\Omega
\]

The \(R_{IN1}\) and \(R_{IN2}\) resistor values can be selected to scale the input voltage at the \(V_{in}\) pin. The \(R_{IN1}\) resistor is selected with consideration of losses and high power factor correction. In this example we select \(R_{IN1} = 1046\,\Omega\). Select two 523\,\Omega standard value resistors in the 0805 package.

The \(R_{IN2}\) value can be calculated:
\[
R_{IN2} = \frac{R_{IN1} \cdot R_{CS} \cdot G_{PWM} \cdot I_{\text{pri}_{\text{peak}}}}{V_{DC_{\text{bulk}_{\text{min}}} - (G_{PWM} \cdot I_{\text{pri}_{\text{peak}}} \cdot R_{CS})}}
\]
\[
R_{IN2} = 18.8\,\Omega
\]
Select a standard value resistor, 18.7\,\Omega, where:

- PWM-Op gain, \(G_{PWM} = 3\) (from the IX9907 data sheet).
- Select the \(C_{VR}\) capacitor to be 2.2\,nF and the \(D_{VR}\) diode can be BAS16, 100V, or equivalent.

2.12 Design of \(V_{CC}\) Start-Up Power Supply and Component Selection for Auxiliary Power Supply

The start-up power supply can be implemented using depletion mode power DMOS, zener diode, resistor and blocking diode. In this case Q1, CPC5603C, is selected with a 20V Zener diode, MMSZ5250B, and R1, 402\,\Omega resistor, which provides bias current for Z1. The blocking diode for \(V_{CC}\) start-up and auxiliary \(D_{VCC1}\), \(D_{VCC2}\) is selected BAS16, 100V diode or equivalent. \(V_{CC1}\) capacitor 10\,\mu F and small bypass 0.1\,\mu F will be adequate; however, if there is dimming requirement a capacitor of 22\,\mu F should be selected.

2.13 Output Schottky Diode and Capacitor

The Schottky output diode is exposed to large currents when the converter is operated in critical conduction mode, CCM. Care should be taken to ensure adequate margins for the voltage and current ratings.

The required blocking voltage for \(D_{OUT}\):
\[
V_{d_{\text{out}}} > \left(\sqrt{2} \cdot 135 \cdot V_{AC_{\text{max}}} \cdot \frac{N_S}{N_P} + V_{\text{LED}_{\text{string}}}
ight) + V_{f}
\]
\[
V_{d_{\text{out}}} > (191\,V \cdot 0.1626) + 20V \approx 51\,V
\]

See 3.2 Determine Transformer Turns Ratio for the \(N_S/N_P\) ratio. Select a Schottky diode with a 150\,V rating.

The output diode is exposed to large peak currents.
\[
I_{d_{\text{rms}}} = I_{\text{rms}} \cdot \frac{1 - D_{\text{max}}}{D_{\text{max}}} \cdot \frac{V_{\text{LED}_{\text{string}}} + V_f}{V_{\text{in}}}
\]
\[
I_{d_{\text{rms}}} = 0.213\,A_{\text{rms}} \cdot 1 \cdot 6.135 = 1.31\,A_{\text{rms}}
\]

See 2.4 Primary Inductor Currents Calculation. For adequate margin, select a 3\,A_{\text{rms}} diode, such as STPS3150V.

The output capacitor can be selected based on the desired output voltage ripple. The dynamic resistance of the LED driven at a given current should also be considered, as this will determine the current ripple through the LED string.

In this application, the LEDs have a dynamic resistance of 1\,\Omega measured at 500mA operating current. 6 LEDs result in 6\,\Omega of dynamic resistance.
\[
V_{\text{out}_{\text{rip}}} = I_{\text{LED}_{\text{max}}} \cdot R_{\text{dynamic}}
\]
\[
V_{\text{out}_{\text{rip}}} = 500mA \cdot 6\,\Omega = 3\,V_{\text{pp}}
\]

The output capacitor can be approximated:
\[
C_{out} = \frac{2 \cdot I_{\text{LED}_{\text{max}}}}{V_{\text{out}_{\text{rip}}} \cdot 2 \cdot \pi \cdot 120\,Hz}
\]
\[
C_{out} = \frac{2 \cdot 500mA}{3\,V_{\text{pp}} \cdot 2 \cdot \pi \cdot 120\,Hz} \approx 442\,\mu F
\]

Select two 220\,\mu F capacitors, EEV-FMV1221L. These capacitors are rated at 105°C for 4000 hours with 100kHz frequency.
3 Transformer Design

A step-by-step guide for transformer design will be presented here. Primary inductance and turns ratio will be calculated, and the appropriate wire size will be selected. The transformer core and coil former will be selected to support design power requirements, and a general guideline will be presented for transformer construction to achieve the best efficiency, and avoiding transformer saturation at higher temperatures.

3.1 Primary Inductance Calculation

\[L_{\text{pri}} = \frac{(V_{\text{DC, bulk min}} \cdot \eta \cdot D_{\text{max}})^2}{2 \cdot P_{\text{IN}} \cdot f_s} \]

\[L_{\text{pri}} = \frac{(127.3 \cdot 0.85 \cdot 0.5)^2}{2 \cdot 12 \cdot W \cdot 67kHz} \approx 1.82mH \]

3.2 Determine Transformer Turns Ratio

Secondary to primary turns ratio:

\[\frac{N_S}{N_P} = \frac{V_{\text{LED String}} + V_f}{\sqrt{2} \cdot V_{\text{AC,min}}} \cdot \frac{1 - D_{\text{max}}}{D_{\text{max}}} \]

Where \(V_f \) is the voltage drop of the output diode.

\[\frac{N_S}{N_P} = \frac{20V + 0.7V}{\sqrt{2} \cdot 90V} \cdot \frac{1 - 0.5}{0.5} \approx 0.1626 \]

The auxiliary to primary turns ratio:

\[\frac{N_A}{N_P} = \frac{V_{\text{aux max}} + V_f}{\sqrt{2} \cdot V_{\text{AC,min}}} \cdot \frac{1 - D_{\text{max}}}{D_{\text{max}}} \]

\[\frac{N_A}{N_P} = \frac{18V + 0.7V}{\sqrt{2} \cdot 90V} \cdot \frac{1 - 0.5}{0.5} \approx 0.1469 \]

The auxiliary to secondary turns ratio:

\[\frac{N_A}{N_S} = \frac{V_{\text{aux max}} + V_f}{V_{\text{LED String}} + V_f} \]

\[\frac{N_A}{N_S} = \frac{18V + 0.7V}{20V + 0.7V} \approx 0.9034 \]

3.3 Determine Primary Winding Wire Size

The first step is to find the RMS current through the primary winding, which can be approximated with the following equation:

\[I_{\text{rms}} = I_{\text{pri,peak}} \cdot \frac{D_{\text{max}}}{3} \]

\[I_{\text{rms}} = 0.522A_{\text{peak}} \cdot \frac{0.5}{3} \approx 0.213A_{\text{rms}} \]

The primary winding wire area can be calculated:

\[A_{W,\text{pri}} = \frac{I_{\text{rms}}}{J_{\text{max}}} \approx \frac{0.213A_{\text{rms}}}{6A/mm^2} = 0.0355mm^2 \]

Where \(J_{\text{max}} \) is the current density of a wire, which is stated by the wire manufacturer to be 6A/mm².

The diameter is determined by the following formula:

\[D_{w,\text{pri}} = \sqrt{\frac{0.0355mm^2}{0.7854}} \approx 0.213mm \]

From Table 1: Wire Gauge Table this is converted to 32 AWG.

3.4 Determine Secondary Winding Wire Size

The peak current of secondary winding can be determined by the following formula:

\[I_{\text{sec,peak}} = \frac{2 \cdot I_{\text{LED max}}}{1 - D_{\text{max}}} = 2 \cdot 0.54 \approx 2A_{\text{peak}} \]

The RMS current can be found:

\[I_{\text{sec, rms}} = I_{\text{sec,peak}} \cdot \sqrt{\frac{1 - D_{\text{max}}}{3}} \approx 2A_{\text{peak}} \cdot 0.408 \approx 0.817A_{\text{rms}} \]

Calculate the secondary wire size:

\[A_{W,\text{sec}} = \frac{I_{\text{sec, rms}}}{6} \approx \frac{0.817A_{\text{rms}}}{6} \approx 0.136mm^2 \]

Calculate the secondary wire diameter:

\[D_{w,\text{sec}} = \sqrt{\frac{0.136mm^2}{0.7854}} \approx 0.416mm \]

Convert using Table 1: Wire Gauge Table to AWG 26.
3.5 Determine Auxiliary Winding Wire Size

The maximum current in the auxiliary winding can be calculated using:

\[I_{\text{aux,peak}} = \frac{2 \cdot I_{\text{aux, max}}}{1 - D_{\text{max}}} = \frac{2 \cdot 30mA}{1 - 0.5} = 0.12A_{\text{peak}} \]

The RMS current can be calculated:

\[I_{\text{aux,rms}} = I_{\text{aux,peak}} \cdot \sqrt{\frac{1 - D_{\text{max}}}{3}} \approx 0.049A_{\text{rms}} \]

The required wire area is given:

\[A_{w,\text{aux}} = \frac{I_{\text{aux,rms}}}{6} \approx 0.0082mm^2 \]

Wire diameter:

\[D_{w,\text{aux}} \approx \sqrt[2]{\frac{0.0082mm^2}{0.7854}} \approx 0.102mm \]

Convert using Table 1: Wire Gauge Table to AWG 38.

<table>
<thead>
<tr>
<th>American Wire Gauge (AWG)</th>
<th>Equivalent Wire Diameter (mm)</th>
<th>Equivalent Wire Area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0.0799</td>
<td>0.00501</td>
</tr>
<tr>
<td>39</td>
<td>0.0897</td>
<td>0.00632</td>
</tr>
<tr>
<td>38</td>
<td>0.101</td>
<td>0.00797</td>
</tr>
<tr>
<td>37</td>
<td>0.113</td>
<td>0.011</td>
</tr>
<tr>
<td>36</td>
<td>0.127</td>
<td>0.0127</td>
</tr>
<tr>
<td>35</td>
<td>0.143</td>
<td>0.016</td>
</tr>
<tr>
<td>34</td>
<td>0.16</td>
<td>0.0201</td>
</tr>
<tr>
<td>33</td>
<td>0.18</td>
<td>0.0254</td>
</tr>
<tr>
<td>32</td>
<td>0.202</td>
<td>0.032</td>
</tr>
<tr>
<td>31</td>
<td>0.227</td>
<td>0.0404</td>
</tr>
<tr>
<td>30</td>
<td>0.255</td>
<td>0.051</td>
</tr>
<tr>
<td>29</td>
<td>0.286</td>
<td>0.0642</td>
</tr>
<tr>
<td>28</td>
<td>0.321</td>
<td>0.081</td>
</tr>
<tr>
<td>27</td>
<td>0.361</td>
<td>0.102</td>
</tr>
<tr>
<td>26</td>
<td>0.405</td>
<td>0.129</td>
</tr>
<tr>
<td>25</td>
<td>0.455</td>
<td>0.162</td>
</tr>
<tr>
<td>24</td>
<td>0.511</td>
<td>0.205</td>
</tr>
<tr>
<td>23</td>
<td>0.573</td>
<td>0.258</td>
</tr>
<tr>
<td>22</td>
<td>0.644</td>
<td>0.326</td>
</tr>
<tr>
<td>21</td>
<td>0.723</td>
<td>0.41</td>
</tr>
<tr>
<td>20</td>
<td>0.812</td>
<td>0.518</td>
</tr>
<tr>
<td>19</td>
<td>0.912</td>
<td>0.653</td>
</tr>
<tr>
<td>18</td>
<td>1.024</td>
<td>0.823</td>
</tr>
<tr>
<td>17</td>
<td>1.15</td>
<td>1.038</td>
</tr>
<tr>
<td>16</td>
<td>1.29</td>
<td>1.31</td>
</tr>
<tr>
<td>15</td>
<td>1.45</td>
<td>1.65</td>
</tr>
<tr>
<td>14</td>
<td>1.63</td>
<td>2.08</td>
</tr>
<tr>
<td>13</td>
<td>1.83</td>
<td>2.62</td>
</tr>
<tr>
<td>12</td>
<td>2.05</td>
<td>3.31</td>
</tr>
<tr>
<td>11</td>
<td>2.3</td>
<td>4.17</td>
</tr>
<tr>
<td>10</td>
<td>2.59</td>
<td>5.26</td>
</tr>
<tr>
<td>9</td>
<td>2.91</td>
<td>6.63</td>
</tr>
<tr>
<td>8</td>
<td>3.26</td>
<td>8.37</td>
</tr>
<tr>
<td>7</td>
<td>3.67</td>
<td>10.55</td>
</tr>
<tr>
<td>6</td>
<td>4.11</td>
<td>13.3</td>
</tr>
<tr>
<td>5</td>
<td>4.62</td>
<td>16.75</td>
</tr>
<tr>
<td>4</td>
<td>5.19</td>
<td>21.15</td>
</tr>
<tr>
<td>3</td>
<td>5.83</td>
<td>26.67</td>
</tr>
<tr>
<td>2</td>
<td>6.54</td>
<td>33.62</td>
</tr>
<tr>
<td>1</td>
<td>7.35</td>
<td>42.4</td>
</tr>
</tbody>
</table>
3.6 Select Inductor Core & Calculate Turns

The Ferroxcube catalog lists the following specifications for the E20/10/5 core set.

- $\Sigma(l_e/A_e)$ core factor $= 1.37 \text{ mm}^{-1}$
- V_e effective volume $= 1340 \text{ mm}^3$
- l_e effective length $= 42.8 \text{ mm}$
- A_e effective area $= 31.2 \text{ mm}^2$

The air gap, G, of 0.3mm may be used for initial calculation. The effective permeability of the core can be calculated:

$$\mu_e = \frac{\mu_i}{1 + G \cdot \mu_i / l_e}$$

Where $\mu_i = 2000$ (for N27 material or 1P2400) and $G=0.3\text{mm}$.

$$\mu_e = \frac{2000}{1 + 0.3\text{mm} \cdot 2000 / 42.8\text{mm}} \approx 133$$

Calculate Inductance Factor A_L for this core:

$$A_L = \frac{\mu_0 \cdot \mu_e}{\sum l_e / A_e}$$

$$A_L \approx \frac{4\pi \cdot 10^{-7} \text{H/m} \cdot 133 \cdot 10^{-3}}{1.37} \approx \frac{121.99 \text{ nH}}{\text{turn}^2} \approx 121.99 \text{nH/turn}^2$$

Where $\mu_0 = \text{vacuum permeability} = 4\pi \cdot 10^{-7} \text{H/m}$.

Calculate number of turns for the primary winding:

$$N_{pri} = \frac{l_{pri}}{A_L} \cdot \sqrt[3]{\frac{1.82 \text{ mH} \cdot \text{turn}^2}{121.99 \text{ nH}}} \approx 122 \text{ turns}$$

Calculate the maximum flux density:

$$B_{max} = \frac{N_{pri} \cdot I_{pri_peak} \cdot A_L}{A_e}$$

$$B_{max} \approx \frac{122 \text{ turn} \cdot 0.522 \text{A}_\text{peak} \cdot 121.99 \text{nH}}{31.2 \text{mm}^2} \approx 0.248 \text{T}$$

Note that B_{max} for 1P2400, MnZn ferrite, is 0.36T at 100°C.

Calculate number of turns for secondary and auxiliary windings:

$$N_{sec} = N_{pri} \cdot \frac{N_S}{N_P} \approx 122 \text{ turns} \cdot 0.1626 \approx 20 \text{ turns}$$

$$N_{aux} = N_{pri} \cdot \frac{N_A}{N_P} \approx 122 \text{ turns} \cdot 0.1468 \approx 18 \text{ turns}$$

Calculate to make sure windings will fit the winding area of coil former. The Ferroxcube data sheet provides information for 8-pin coil former and specifies winding area of 27mm2.

The fill factor has to be taken into consideration as this will affect winding area for this coil former. In general we can use fill factor K_u of 0.3 to 0.7 as a starting point. In this case 0.3 will be selected.

Note: The total winding area should not be exceeded due to the selection of approximate standard wire gauges from Table 1: Wire Gauge Table.
3.7 Flyback Transformer Construction

The transformer block diagram shows the primary split into two sections of 61 turns each. The secondary and auxiliary are wound between the two primary windings. The transformer stack-up has three layers of insulation tape between the primary and the secondary side. This method enables the transformer to pass the safety standard for electrical strength requirement. In the previous step, we selected an air gap of 0.3mm as our starting point. The air gap is critical because it allows the transformer to extend its maximum saturation; however, if the gap is larger, then it could contribute to higher leakage inductance. In this example, it is possible to achieve a leakage inductance less than 2% of primary.

For additional information please visit our website at: www.ixysic.com

IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division’s product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.

Specification: AN-305-R02
©Copyright 2016, IXYS Integrated Circuits Division
All rights reserved. Printed in USA.
7/14/2016