Description

OMA160 is a 250V, 50mA, 100Ω, normally open (1-Form-A) relay. This high performance, optically isolated Solid State Relay provides one of the fastest (0.125ms) switching times available along with a very low off-state leakage current of 25nA.

Features

- Fast Switching Times: 0.125ms
- Low Off-State Leakage Current: 25nA
- 3750V rms Input/Output Isolation
- 100% Solid State
- Low Drive Power Requirements
- Arc-Free With No Snubbing Circuits
- FCC Compatible
- VDE Compatible
- No EMI/RFI Generation
- Small 6-Pin Package
- Flammability Rating UL 94 V-0
- Tape & Reel Version Available

Approvals

- UL Recognized Component: File E76270
- CSA Certified Component: Certificate # 1175739
- EN/IEC 60950-1 Certified Component: Certificate available on our website

Applications

- Telecommunications
- Telecom Switching
- Tip/Ring Circuits
- Modem Switching (Laptop, Notebook, Pocket Size)
- Hook Switch
- Dial Pulsing
- Ground Start
- Ringing Injection
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment - Patient/Equipment Isolation
- Security
- Aerospace
- Industrial Controls

Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking Voltage</td>
<td>250</td>
<td>V P</td>
</tr>
<tr>
<td>Load Current</td>
<td>50</td>
<td>mA rms / mA DC</td>
</tr>
<tr>
<td>On-Resistance (max)</td>
<td>100</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Pin Configuration

[Diagram of pin configuration]

Switching Characteristics

[Diagram of switching characteristics of normally open devices]

DS-OMA160-R12

www.ixysic.com
Absolute Maximum Ratings @ 25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking Voltage</td>
<td>250</td>
<td>V<sub>P</sub></td>
</tr>
<tr>
<td>Reverse Input Voltage</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Input Control Current Peak (10ms)</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Input Power Dissipation<sup>1</sup></td>
<td>150</td>
<td>mW</td>
</tr>
<tr>
<td>Total Power Dissipation<sup>2</sup></td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>Isolation Voltage, Input to Output</td>
<td>3750</td>
<td>V<sub>rms</sub></td>
</tr>
<tr>
<td>Operational Temperature</td>
<td>-40 to +85</td>
<td>ºC</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40 to +125</td>
<td>ºC</td>
</tr>
</tbody>
</table>

¹ Derate linearly 1.33 mW / ºC
² Derate linearly 6.67 mW / ºC

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Typical values are characteristic of the device at +25°C, and are the result of engineering evaluations. They are provided for information purposes only, and are not part of the manufacturing testing requirements.

Electrical Characteristics @ 25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Current, Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC/DC Configuration</td>
<td>-</td>
<td>I<sub>L</sub></td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>mA<sub>max</sub> / mA<sub>DC</sub></td>
</tr>
<tr>
<td>DC Configuration</td>
<td>t=10ms</td>
<td>I<sub>LPK</sub></td>
<td>-</td>
<td>-</td>
<td>±100</td>
<td>mA<sub>P</sub></td>
</tr>
<tr>
<td>On-Resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC/DC Configuration</td>
<td>I<sub>L</sub>=50mA</td>
<td>R<sub>ON</sub></td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>DC Configuration</td>
<td>I<sub>L</sub>=80mA</td>
<td></td>
<td>-</td>
<td>15</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Off-State Leakage Current</td>
<td>V<sub>L</sub>=250V<sub>P</sub></td>
<td>I<sub>LEAK</sub></td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>nA</td>
</tr>
<tr>
<td>Switching Speeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On</td>
<td>I<sub>F</sub>=10mA, V<sub>L</sub>=10V</td>
<td>t<sub>on</sub></td>
<td>-</td>
<td>-</td>
<td>0.125</td>
<td>ms</td>
</tr>
<tr>
<td>Turn-Off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>I<sub>F</sub>=0mA, V<sub>L</sub>=50V, f=1MHz</td>
<td>C<sub>OUT</sub></td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Input Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Control Current to Activate</td>
<td>I<sub>L</sub>=50mA</td>
<td>I<sub>F</sub></td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Input Control Current to Deactivate</td>
<td>-</td>
<td>I<sub>F</sub></td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>Input Voltage Drop</td>
<td>I<sub>F</sub>=10mA</td>
<td>V<sub>F</sub></td>
<td>0.9</td>
<td>1.35</td>
<td>1.56</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Input Current</td>
<td>V<sub>R</sub>=5V</td>
<td>I<sub>R</sub></td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>Common Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input to Output Capacitance</td>
<td>V<sub>IO</sub>=0V, f=1MHz</td>
<td>C<sub>IO</sub></td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>pF</td>
</tr>
</tbody>
</table>
PERFORMANCE DATA*

*Unless otherwise noted, data presented in these graphs is typical of device operation at 25°C.
For guaranteed parameters not indicated in the written specifications, please contact our application department.

Typical LED Forward Voltage Drop (N=50, I_{F}=10mA)

Typical Turn-On Time (N=50, I_{F}=10mA, I_{L}=50mA_{DC})

Typical Turn-Off Time (N=50, I_{F}=10mA, I_{L}=50mA_{DC})

Typical I_{F} for Switch Operation (N=50, I_{L}=50mA_{DC})

Typical I_{F} for Switch Dropout (N=50, I_{L}=50mA_{DC})

Typical On-Resistance Distribution (N=50, I_{F}=10mA, I_{L}=50mA_{DC})

Typical Blocking Voltage Distribution (N=50)

Typical LED Forward Voltage Drop vs. Temperature

Typical Turn-On Time vs. LED Forward Current (I_{L}=50mA_{DC})

Typical Turn-Off Time vs. LED Forward Current (I_{L}=50mA_{DC})
PERFORMANCE DATA*

*Unless otherwise noted, data presented in these graphs is typical of device operation at 25°C.
For guaranteed parameters not indicated in the written specifications, please contact our application department.
Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingestion. IXYS Integrated Circuits classifies its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, **IPC/JEDEC J-STD-020**, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) classification as shown below, and should be handled according to the requirements of the latest version of the joint industry standard **IPC/JEDEC J-STD-033**.

<table>
<thead>
<tr>
<th>Device</th>
<th>Moisture Sensitivity Level (MSL) Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMA160 / OMA160S</td>
<td>MSL 1</td>
</tr>
</tbody>
</table>

ESD Sensitivity

This product is **ESD Sensitive**, and should be handled according to the industry standard **JESD-625**.

Soldering Profile

Provided in the table below is the Classification Temperature (T_C) of this product and the maximum dwell time the body temperature of this device may be ($T_C - 5)ºC or greater. The classification temperature sets the Maximum Body Temperature allowed for this device during lead-free reflow processes. For through-hole devices, and any other processes, the guidelines of **J-STD-020** must be observed.

<table>
<thead>
<tr>
<th>Device</th>
<th>Classification Temperature (T_C)</th>
<th>Dwell Time (t_D)</th>
<th>Max Reflow Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMA160</td>
<td>250ºC</td>
<td>30 seconds</td>
<td>1</td>
</tr>
<tr>
<td>OMA160S</td>
<td>250ºC</td>
<td>30 seconds</td>
<td>3</td>
</tr>
</tbody>
</table>

Board Wash

IXYS Integrated Circuits recommends the use of no-clean flux formulations. Board washing to reduce or remove flux residue following the solder reflow process is acceptable provided proper precautions are taken to prevent damage to the device. These precautions include, but are not limited to: using a low pressure wash and providing a follow up bake cycle sufficient to remove any moisture trapped within the device due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning or drying methods that employ ultrasonic energy may damage the device and should not be used. Additionally, the device must not be exposed to flux or solvents that are Chlorine- or Fluorine-based.
OMA160

Mechanical Dimensions

OMA160

OMA160S

PCB Hole Pattern

Dimensions

mm
(inches)

PCB Land Pattern

Dimensions

mm
(inches)
OMA160STR Tape & Reel

NOTES:
1. All dimensions carry tolerances of EIA Standard 481-2
2. The tape complies with all "Notes" for constant dimensions listed on page 5 of EIA-481-2

Dimensions

mm
(inches)

Embossment

Embossed

Carrier

Embossment

330.2 Dia
(13.00 Dia)

Top Cover
Tape Thickness
0.102 Max
(0.004 Max)

W = 16.00
(0.63)

P1 = 12.00
(0.472)

K0 = 4.90
(0.19)

A0 = 10.10
(0.398)

K1 = 3.80
(0.15)

B0 = 10.10
(0.398)

User Direction of Feed