CPC1966YX6
Rapid Turn-On
AC Power Switch

Parameter	Rating	Units
AC Operating Voltage | 20 - 240 | V_{rms}
Load Current | 3 | A_{rms}
On-State Voltage Drop | 1.1 | V_p (at I_L = 2A_p)
Blocking Voltage | 600 | V_p

Features
- Load Current up to 3A\text{rms}
- 600V_p Blocking Voltage
- High Surge Current: 30A
- Rapid Turn-On (Non-Zero-Cross Turn-On)
- 5mA Sensitivity
- Creepage Distance: 0.125” on Output Pins
- DC Control, AC Output
- Optically Isolated
- TTL and CMOS Compatible
- Low EMI and RFI Generation
- High Noise Immunity
- Machine Insertable, Wave Solderable

Applications
- Lighting
- HVAC (Heating, Ventilation, Air Conditioning)
- Programmable Control
- Process Control
- Power Control Panels
- Remote Switching
- Gas Pump Electronics
- Contactors
- Large Relays
- Solenoids
- Motors
- Heaters

Description
CPC1966YX6 is an AC Solid State Switch utilizing dual power SCR outputs. This device features Rapid Turn-On (non-zero-cross) control of the output SCRs, which makes it ideal for precisely switching AC loads independent of the load voltage phase.

The optically coupled input and output circuits provide 3750V_{rms} of isolation and noise immunity between the control and load circuits. As a result, the CPC1966YX6 is well suited for industrial environments where electromagnetic interference would disrupt the operation of plant facility communication and control systems.

Approvals
- UL Recognized Component: File E69938
- CSA Certified Component: Certificate 1172007

Ordering Information

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC1966YX6</td>
<td>4-Pin (8-Pin Body) SIP (25/Tube)</td>
</tr>
</tbody>
</table>

Pin Configuration

Rapid Turn-On (Non-Zero-Cross) Waveforms
Absolute Maximum Ratings @ 25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking Voltage (V_{DRM})</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Input Voltage</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Input Control Current</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Peak (10ms)</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>di/dt Critical Rate of Rise of On-State Current</td>
<td>75</td>
<td>A/μs</td>
</tr>
<tr>
<td>Input Power Dissipation ¹</td>
<td>150</td>
<td>mW</td>
</tr>
<tr>
<td>Total Power Dissipation ²</td>
<td>2400</td>
<td>mW</td>
</tr>
<tr>
<td>ESD, Human Body Model</td>
<td>4</td>
<td>kV</td>
</tr>
<tr>
<td>i^2t Fusing Current (1/2 Sine Wave, 60Hz)</td>
<td>8</td>
<td>A²s</td>
</tr>
<tr>
<td>Isolation Voltage, Input to Output</td>
<td>3750</td>
<td>V_{rms}</td>
</tr>
<tr>
<td>Operational Temperature</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

¹ Derate linearly 1.33 mW / °C

² Derate linearly 20 mW / °C

Electrical Characteristics @ 25°C

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Current, Continuous</td>
<td>$V_s=20-240V_{rms}$</td>
<td>I_L</td>
<td>0.1</td>
<td>-</td>
<td>3</td>
<td>A_{rms}</td>
</tr>
<tr>
<td>Maximum Surge Current</td>
<td>$t < 16ms$</td>
<td>I_P</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Off State Leakage Current</td>
<td>V_{DRM}</td>
<td>I_{LEAK}</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>$μA_P$</td>
</tr>
<tr>
<td>On-State Voltage Drop</td>
<td>$I_L=2A_P$</td>
<td>-</td>
<td>-</td>
<td>0.88</td>
<td>1.1</td>
<td>V_P</td>
</tr>
<tr>
<td>Off-State dV/dt</td>
<td></td>
<td>dV/dt</td>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>$V/μs$</td>
</tr>
<tr>
<td>Switching Speeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on</td>
<td>$I_p = 5 mA$, Resistive, $V_s=20V$, 60Hz</td>
<td>t_{un}</td>
<td>-</td>
<td>20</td>
<td>500</td>
<td>$μs$</td>
</tr>
<tr>
<td>Turn-off</td>
<td></td>
<td>t_{off}</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>cycles</td>
</tr>
<tr>
<td>Holding Current</td>
<td></td>
<td>I_H</td>
<td>-</td>
<td>44</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Latching Current</td>
<td></td>
<td>I_L</td>
<td>-</td>
<td>48</td>
<td>75</td>
<td>mA</td>
</tr>
<tr>
<td>Operating Frequency</td>
<td></td>
<td></td>
<td>20</td>
<td>-</td>
<td>500</td>
<td>Hz</td>
</tr>
<tr>
<td>Input Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Control Current to Activate ¹</td>
<td>60Hz</td>
<td>I_P</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Input Drop-out Voltage</td>
<td></td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage Drop</td>
<td>$I_p=5mA$</td>
<td>V_F</td>
<td>0.9</td>
<td>1.2</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Input Current</td>
<td>$V_{R}=5V$</td>
<td>I_R</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>$μA$</td>
</tr>
<tr>
<td>Common Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input to Output Capacitance</td>
<td></td>
<td>C_{ID}</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>pF</td>
</tr>
</tbody>
</table>

¹ For high-noise environments, or for high-frequency operation, use $I_p ≥ 10mA$.
PERFORMANCE DATA @25ºC (Unless Otherwise Noted)*

LED Forward Voltage Distribution
(N=50, I_F=5mA, T_A=25ºC)

Typical I_F for Switch Operation
Resistive Load
(N=50, I_F=2A, V_L=120V, 60Hz)

Typical SCR Forward Voltage Distribution
(N=50, I_F=5mA, I_L=2A, T_A=25ºC)

Typical Blocking Voltage Distribution
(N=50)

LED Forward Voltage vs. Temperature

Typical Turn-On Time vs. LED Forward Current

Typical Turn-On Time vs. Temperature

Typical I_F for Switch Operation
vs. Temperature
(I_L=350mA, 60Hz)

* The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.
PERFORMANCE DATA @25°C (Unless Otherwise Noted)*

Holding Current vs. Temperature
(I_H=0mA)

Voltage Drop vs. Temperature
(I_L=5mA)

Typical Load Voltage vs. Load Current
(I_P=5mA)

Temperature (ºC)
-40 -20 0 20 40 60 80 100

Voltage Drop (V_D)
0.70 0.75 0.80 0.85 0.90 0.95 1.00

Load Voltage (V_L)
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Load Current (I_L)
-6 -4 -2 0 2 4 6

Temperature (ºC)
-40 -20 0 20 40 60 80 100

Leakage Current vs. Temperature
(V_L=600V)

Leakage Current vs. Temperature
(V_L=300V)

Maximum Load Current
(I_L=5mA)

Maximum Surge Current
(Non-Repetitive)
(Values Apply to T_J=50ºC Before Surge)

Holding Current (I_H)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Load Current (I_L)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (ms)
1 10 100 1000

* The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.
Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingestion. IXYS Integrated Circuits Division classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) rating as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

<table>
<thead>
<tr>
<th>Device</th>
<th>Moisture Sensitivity Level (MSL) Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC1966YX6</td>
<td>MSL 1</td>
</tr>
</tbody>
</table>

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Reflow Profile

This product has a maximum body temperature and time rating as shown below. All other guidelines of J-STD-020 must be observed.

<table>
<thead>
<tr>
<th>Device</th>
<th>Maximum Temperature x Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC1966YX6</td>
<td>245°C for 30 seconds</td>
</tr>
</tbody>
</table>

Board Wash

IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since IXYS Integrated Circuits Division employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after solder reflow processes. Chlorine- or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.

ROHS, E3
MECHANICAL DIMENSIONS

CPC1966YX6

For additional information please visit our website at: www.ixysic.com

IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division’s product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.