IX9908
Design Considerations
1 Introduction

This application note provides general guidelines for designing an off-line LED driver using IXYS Integrated Circuits Division's IX9908. The IX9908 can be configured to drive an external MOSFET device in a quasi-resonant flyback converter power stage that provides a constant current output to a LED string while maintaining a high power factor.

This driver features a high voltage start-up circuit that eliminates the need for a Vcc resistor, thereby improving overall power dissipation. In addition, there are multiple safety features such as under-voltage lockout, over-voltage protection, digital soft-start, foldback correction, and cycle-by-cycle peak current limiting. The IX9908 is an excellent choice for many phase-cut dimming and high power-factor correction LED lighting applications.

Figure 1 IX9908 Block Diagram
1.1 LED Driver Specifications

The following equations and component selections are based on the following LED driver specifications:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input Voltage</td>
<td>$V_{AC_{min}}$</td>
<td>90</td>
<td>V_{rms}</td>
</tr>
<tr>
<td>Minimum Voltage</td>
<td>$V_{AC_{min}}$</td>
<td>90</td>
<td>V_{rms}</td>
</tr>
<tr>
<td>Maximum Voltage</td>
<td>$V_{AC_{max}}$</td>
<td>135</td>
<td>V_{rms}</td>
</tr>
<tr>
<td>AC Input Frequency</td>
<td>f_{AC}</td>
<td>60</td>
<td>Hz</td>
</tr>
<tr>
<td>Auxiliary Voltage</td>
<td>$V_{aux_{max}}$</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Auxiliary Current</td>
<td>$I_{aux_{max}}$</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>LED String Voltage</td>
<td>$V_{LED_{string}}$</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>LED String Current</td>
<td>$I_{LED_{max}}$</td>
<td>500</td>
<td>mA</td>
</tr>
<tr>
<td>Estimated Efficiency</td>
<td>η</td>
<td>85</td>
<td>%</td>
</tr>
<tr>
<td>Oscillator Frequency</td>
<td>f_{S}</td>
<td>67</td>
<td>kHz</td>
</tr>
<tr>
<td>Power Factor</td>
<td>PF</td>
<td>98</td>
<td>%</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td>D_{max}</td>
<td>50</td>
<td>%</td>
</tr>
</tbody>
</table>
2 Component Selection

2.1 DC Bulk Voltage at Low and High Line

\[V_{DC_bulk_min} = \sqrt{2} \cdot V_{AC_min} = \sqrt{2} \cdot 90 V_{AC} \approx 127.3 V \]
\[V_{DC_bulk_max} = \sqrt{2} \cdot V_{AC_max} = \sqrt{2} \cdot 135 V_{AC} \approx 191 V \]

2.2 Output Power Calculation

\[P_{out} = V_{LED_string} \cdot I_{LED_max} \]
\[P_{out} = 20 V \cdot 500mA = 10 W \]

2.3 Input Power Calculation

\[P_{in} = \frac{P_{out}}{\eta \cdot PF} = \frac{10 W}{0.85 \cdot 0.98} \approx 12 W \]

2.4 Primary Inductors Currents Calculation

\[I_{pri_peak} = \frac{\sqrt{2} \cdot V_{AC_min} \cdot D_{max}}{L_{pri} \cdot f_S} \]
\[I_{pri_peak} = \frac{127.3 V \cdot 0.5}{1.82 mH \cdot 67 kHz} \approx 0.522 A_{peak} \]

For \(L_{pri} \), see 3.1 Primary Inductance Calculation.

\[I_{rms} = I_{pri_peak} \cdot \frac{D_{max}}{3} \]
\[I_{rms} = 0.522 A_{peak} \cdot \frac{0.5}{3} \approx 0.213 A_{rms} \]

Note that duty cycle above 50% will result in converter stability issues such as sub-harmonic oscillations.

2.5 Reflected Flyback Voltage Calculation

\[V_{ro} = \frac{V_{LED_string} + V_f}{\left(\frac{N_S}{N_P} \right)} = \frac{20 V + 0.7 V}{0.1626} \approx 127 V \]

See 3.2 Determine Transformer Turns Ratio for \(N_S/N_P \) ratio.

2.6 Input Capacitor, \(C_{IN} \)

The IX9908 is designed to operate without the need of a large bulk capacitor. This operating method enables the input current to form a triangular shape that closely follows the rectified AC line voltage, enabling a very high power factor of up to 98% with low total harmonic distortion (THD).

A small, 0.1\(\mu \)F, 400V polyester film filter capacitor should be adequate for this application.

2.7 Input Rectifier Bridge

The breakdown voltage for this bridge is based on the maximum input voltage.

\[V_{bridge} = \sqrt{2} \cdot 135 V_{AC} \cdot 2 \approx 382 V \]

Select the next higher standard voltage, 400V.

The rectifier bridge is exposed to high surge currents, so select a bridge that can handle at least five times the \(I_{rms} \) input current. In this case, a 1A bridge would be sufficient.

2.8 Calculate MOSFET Voltage Rating

Assume that \(V_{spike} = 50 V \).

\[V_{DS} = V_{DC_bulk_max} + V_{ro} + V_{spike} \]
\[V_{DS} = 191 V + 127 V + 50 V \approx 368 V \]

Due to the voltage spikes resulting from leakage inductance, the MOSFET should be selected with an adequate margin. A good choice would be between 500V and 600V.

2.9 Design RCD Snubber

In a flyback topology, a snubber circuit is required to clamp the voltage caused by the leakage inductance, which is present in all transformers. Leakage inductance is highly dependent on the transformer construction, so care should be taken to keep it less than 2% of primary inductance. When no leakage inductance is known, a leakage inductance value of 37\(\mu \)H (2% of 1.82mH) can be used as a starting point to calculate the snubber’s resistor, capacitor, and diode values.

\(D_{SN} \) is selected as 1N4007GP (1000V, 1A axial lead).

Energy stored in the leakage inductance \(L_e \):

\[W1 = 0.5 L_e \cdot I_{rms}^2 = 0.5 \cdot 37 \mu H \cdot 0.213^2 \approx 0.84 \mu J \]
Average power transferred from W1 to the snubber:

\[P_1 = W_1 \cdot f_s = 0.84 \mu J \cdot 67 kHz \approx 56 mW \]

\[V_{\text{max}} = V_{\text{DC bulk max}} + V_{\text{ro}} + V_{\text{spike}} \]

\[V_{\text{max}} = 191V + 127V + 50V = 368V \]

- \(V_{\text{spike}} = 50V \)
- \(V_{\text{ro}} = 127V \)

Limiting the voltage to 368V.

\[V_{\text{SN}} = 368V - 127V = 241V \]

\[R_{\text{SN}} = \frac{V_{\text{SN}}^2}{P_1} = \frac{241V^2}{0.056W} \approx 1M\Omega \]

\[C_{\text{SN}} = \frac{T_s}{R_{\text{SN}}} = \frac{15\mu s}{1M\Omega} = 0.015nF \]

\[C_{\text{SN}} \times \frac{T_s}{R_{\text{SN}}} = \frac{1}{f_s \times R_{\text{SN}}} = \frac{1}{67kHz \times 1M\Omega} \approx 15pF \]

For margin, \(C_{\text{SN}} = 1nF \) is selected. This value is a starting point, and might have to be adjusted to get the desired voltage spike suppression.

2.10 Over-Voltage Protection & Zero-Crossing Detection

The application schematic in Figure 2 IX9908 Application Circuit shows that the voltage from the auxiliary winding is connected to the zero crossing pin (ZCV), via RC network resistor \(R_{\text{ZCV1}}, R_{\text{ZCV2}} \) and \(C_{\text{ZCV}} \). The circuit provides a delay so that switch-on can occur at the voltage valley, thus enhancing efficiency. The line voltage is sensed indirectly through the current in \(R_{\text{ZCV1}} \).

The current equation is given by:

\[I_{\text{ZCV}} = \frac{V_{\text{DC bulk min}} \cdot N_A}{R_{\text{ZCV1}} \cdot N_P} \]

Solving for \(R_{\text{ZCV1}} \):

\[R_{\text{ZCV1}} = \frac{V_{\text{DC bulk min}}}{I_{\text{ZCV}} \cdot N_A} \cdot N_P \]

From the \(V_{\text{CS}} \) vs. \(I_{\text{ZCV}} \) graph below we select \(I_{\text{ZCV}} = 1000\mu A \) as the recommended current. For \(N_A/N_P \) value, see 3.2 Determine Transformer Turns Ratio.

\[R_{\text{ZCV1}} = \frac{127.3V}{0.001A} \cdot 0.1468 \approx 18.7k\Omega \]

The over voltage detection can be programmed by \(R_{\text{ZCV2}} \) resistor. The output, \(V_{\text{LED string}} \), is 20V, so select an over voltage protection of 35V, and from the datasheet, \(V_{\text{VZCVOP}} = 3.7V \)

\[R_{\text{ZCV2}} = \frac{R_{\text{ZCV1}} \cdot V_{\text{VZCVOP}}}{V_{\text{ovpht}} - V_{\text{VZCVOP}}} \]

\[R_{\text{ZCV2}} = \frac{18.7k\Omega \cdot 3.7V}{35V - 3.7V} \approx 2.210k\Omega \]

The delay capacitor can be approximated:

\[C_{\text{ZCV}} = t_{\text{RC}} \cdot \frac{R_{\text{ZCV1}} + R_{\text{ZCV2}}}{R_{\text{ZCV1} \cdot R_{\text{ZCV2}}}} \]

\[C_{\text{ZCV}} = 1\mu s \cdot \left(\frac{18.7k\Omega + 2.210k\Omega}{18.7k\Omega \cdot 2.210k\Omega} \right) \approx 519pF \]

Where \(t_{\text{RC}} = 1\mu s \) (see IX9908 data sheet).

2.11 Primary Peak Current Control

The value of the current sense resistor (\(R_{\text{CS}} \)) can be selected by using following equation:

\[R_{\text{CS}} = \frac{V_{\text{CSmax}}}{I_{\text{pri peak}}} \]

\[R_{\text{CS}} = \frac{0.75V}{0.522A_{\text{peak}}} \approx 1.44\Omega \]

The \(R_{\text{IN1}} \) and \(R_{\text{IN2}} \) resistor values can be selected to scale the input voltage at the \(V_R \) pin. The \(R_{\text{IN1}} \) resistor is selected with consideration of losses and high power factor correction. In this example we select \(R_{\text{IN1}} = 1046k\Omega \). Select two 523k\Omega standard value resistors in the 0805 package.
The R_{IN2} value can be calculated:

$$R_{IN2} = \frac{R_{IN1} \cdot R_{CS} \cdot G_{PWM} \cdot I_{pri_peak}}{V_{DC_bulk_min} - (G_{PWM} \cdot I_{pri_peak} \cdot R_{CS})}$$

$R_{IN2} = 18.8k\Omega$. Select a standard value resistor, $18.7k\Omega$, where:

PWM-Op gain, $G_{PWM} = 3$ (from the IX9908 data sheet).

Select the C_{VR} capacitor to be 2.2nF and the D_{VR} diode can be BAS16, 100V, or equivalent.

2.12 Selection of V_{CC} Capacitor and Auxiliary Blocking Diode

In this application, a simple and inexpensive power supply for the IC is made from the auxiliary winding by using a blocking diode and a capacitor.

The auxiliary V_{CC} diode blocking voltage can be calculated:

$$V_{DVCC} > \left(\sqrt{2} \cdot V_{AC_max} \cdot \frac{N_A}{N_P} \right) + V_{aux_max}$$

$$V_{DVCC} > (191V \cdot 0.1468) + 18V \approx 46V$$

In this case, BAS16, 100V, or equivalent, would be selected.

For a dimming application a 22μF capacitor would be required: if there is no dimming requirement, then a 10μF capacitor will suffice.

2.13 Output Schottky Diode and Capacitor

The Schottky output diode is exposed to large currents when the converter is operated in critical conduction mode, CCM. Care should be taken to ensure adequate margins for the voltage and current ratings.

The required blocking voltage for D_{OUT}:

$$V_{d_out} > \left(\sqrt{2} \cdot 135V_{AC_max} \cdot \frac{N_A}{N_P} \right) + V_{LED\string}$$

$$V_{d_out} > (191V \cdot 0.1626) + 20V \approx 51V$$

See [2.4 Primary Inductor Currents Calculation](#). For adequate margin, select a 3A$_{rms}$ diode, such as STPS3150V.

The output capacitor can be selected based on the desired output voltage ripple. The dynamic resistance of the LED driven at a given current should also be considered, as this will determine the current ripple through the LED string.

In this application, the LEDs have a dynamic resistance of 1Ω measured at 500mA operating current. 6 LEDs result in 6Ω of dynamic resistance.

$$V_{out_rip} = I_{LED_max} \cdot R_{dynamic}$$

$$V_{out_rip} = 500mA \cdot 6\Omega = 3V_{pp}$$

The output capacitor can be approximated:

$$C_{out} = \frac{2 \cdot I_{LED_max}}{V_{out_rip} \cdot 2 \cdot \pi \cdot 120Hz}$$

$$C_{out} = \frac{2 \cdot 500mA}{3V_{pp} \cdot 2 \cdot \pi \cdot 120Hz} \approx 442\mu F$$

Select two 220μF capacitors, EEV-FM1V221L. These capacitors are rated at 105°C for 4000 hours with 100kHz frequency.
3 Transformer Design

A step-by-step guide for transformer design will be presented here. Primary inductance and turns ratio will be calculated, and the appropriate wire size will be selected. The transformer core and coil former will be selected to support design power requirements, and a general guideline will be presented for transformer construction to achieve the best efficiency, and avoiding transformer saturation at higher temperatures.

3.1 Primary Inductance Calculation

The primary inductance can be calculated as:

\[L_{\text{pri}} = \frac{(V_{\text{DC
bulk
min}} \cdot \eta \cdot D_{\text{max}})^2}{2 \cdot P_{\text{IN}} \cdot f_{\text{s}}} \]

\[L_{\text{pri}} = \frac{(127.3V \cdot 0.85 \cdot 0.5)^2}{2 \cdot 12W \cdot 67kHz} \approx 1.82mH \]

3.2 Determine Transformer Turns Ratio

The auxiliary to primary turns ratio:

\[N_A = \frac{N_{S}}{N_{P}} = \frac{V_{\text{aux
max}} + V_f}{\sqrt{2} \cdot V_{AC_{\text{min}}}} \cdot \frac{1-D_{\text{max}}}{D_{\text{max}}} \]

\[N_A = \frac{V_{\text{aux
max}} + V_f}{\sqrt{2} \cdot V_{AC_{\text{min}}}} \cdot \frac{1-D_{\text{max}}}{D_{\text{max}}} \approx 0.1469 \]

The auxiliary to secondary turns ratio:

\[N_A = \frac{N_{S}}{N_{S}} = \frac{V_{\text{aux
max}} + V_f}{V_{\text{LED
string}} + V_f} \]

\[N_A = \frac{18V + 0.7V}{20V + 0.7V} \approx 0.9034 \]

3.3 Determine Primary Winding Wire Size

The first step is to find the RMS current through the primary winding, which can be approximated with the following equation:

\[I_{\text{rms}} = I_{\text{pri
peak}} \cdot \frac{D_{\text{max}}}{3} \]

\[I_{\text{rms}} = 0.522A_{\text{peak}} \cdot \frac{0.5}{3} \approx 0.213A_{\text{rms}} \]

The primary winding wire area can be calculated:

\[A_{w_{\text{pri}}} = \frac{0.213A_{\text{rms}}}{6A/mm^2} = 0.0355mm^2 \]

Where \(J_{\text{max}} \) is the current density of a wire, which is stated by the wire manufacturer to be 6A/mm².

The diameter is determined by the following formula:

\[D_{w_{\text{pri}}} = \sqrt{\frac{0.0355mm^2}{0.7854}} \approx 0.213mm \]

From Table 1: Wire Gauge Table this is converted to 32 AWG.

3.4 Determine Secondary Winding Wire Size

The peak current of secondary winding can be determined by the following formula:

\[I_{\text{sec
peak}} = 2 \cdot I_{\text{LED
max}} \cdot \frac{1-D_{\text{max}}}{1-0.5} = 2A_{\text{peak}} \]

The RMS current can be found:

\[I_{\text{sec
rms}} = I_{\text{sec
peak}} \cdot \frac{1-D_{\text{max}}}{3} \approx 2A_{\text{peak}} \cdot 0.408 \approx 0.817A_{\text{rms}} \]

Calculate the secondary wire size:

\[A_{w_{\text{sec}}} = \frac{0.817A_{\text{rms}}}{6} \approx 0.136mm^2 \]

Calculate the secondary wire diameter:

\[D_{w_{\text{sec}}} = \sqrt{\frac{0.136mm^2}{0.7854}} \approx 0.416mm \]

Convert using Table 1: Wire Gauge Table to AWG 26.
3.5 Determine Auxiliary Winding Wire Size

The maximum current in the auxiliary winding can be calculated using:

\[I_{\text{aux,peak}} = \frac{2 \cdot I_{\text{aux,max}}}{1 - D_{\text{max}}} = \frac{2 \cdot 30mA}{1 - 0.5} = 0.12A_{\text{peak}} \]

The RMS current can be calculated:

\[I_{\text{aux,rms}} = I_{\text{aux,peak}} \cdot \sqrt{\frac{1 - D_{\text{max}}}{3}} \approx 0.049A_{\text{rms}} \]

The required wire area is given:

\[A_{\text{w,aux}} = \frac{I_{\text{aux,rms}}}{6} = 0.0082mm^2 \]

Wire diameter:

\[D_{\text{w,aux}} \approx \sqrt{\frac{0.0082mm^2}{0.7854}} \approx 0.102mm \]

Convert using Table 1: Wire Gauge Table to AWG 38.
3.6 Select Inductor Core & Calculate Turns

The Ferroxcube catalog lists the following specifications for the E20/10/5 core set.

- $\Sigma(l/e/A_e)$ core factor $= 1.37 \text{ mm}^{-1}$
- V_e effective volume $= 1340 \text{ mm}^3$
- l_e effective length $= 42.8 \text{ mm}$
- A_e effective area $= 31.2 \text{ mm}^2$

The air gap, G, of 0.3mm may be used for initial calculation. The effective permeability of the core can be calculated:

$$\mu_e = \frac{\mu_i}{1 + \frac{G}{l_e} \cdot \mu_i}$$

Where $\mu_i = 2000$ (for N27 material or 1P2400) and $G=0.3\text{mm}$.

$$\mu_e = \frac{2000}{1 + \frac{0.3\text{mm}}{42.8\text{mm}} \cdot 2000} \approx 133$$

Calculate Inductance Factor A_L for this core:

$$A_L = \frac{\mu_0 \cdot \mu_e}{\sum \frac{l_e}{A_e}}$$

$$A_L \approx \frac{4\pi \cdot 10^{-7} \text{H/m}}{m \cdot \text{turn}^2 \cdot 133 \cdot 10^{-3} \cdot 1.37} \approx 121.99nH \cdot \text{turn}^2$$

Where $\mu_0 = \text{vacuum permeability} = 4 \pi \times 10^{-7} \text{H/m}$.

Calculate number of turns for the primary winding:

$$N_{pri} = \frac{l_{pri}}{A_L} = \frac{1.82mH \cdot \text{turn}^2}{121.99nH \cdot \text{turn}^2} \approx 122 \text{ turns}$$

Calculate the maximum flux density:

$$B_{max} = \frac{N_{pri} \cdot I_{pri_peak} \cdot A_1}{A_e}$$

$$B_{max} \approx \frac{122 \text{turn} \cdot 0.522A_{peak} \cdot 121.99nH}{31.2\text{mm}^2} \approx 0.248T$$

Note that B_{max} for 1P2400, MnZn ferrite, is 0.36T at 100°C.

Calculate number of turns for secondary and auxiliary windings:

$$N_{sec} = \frac{N_{sec}}{N_{pri}} \approx 122 \text{ turns} \cdot 0.1626 \approx 20 \text{ turns}$$

$$N_{aux} = \frac{N_{aux}}{N_{pri}} \approx 122 \text{ turns} \cdot 0.1468 \approx 18 \text{ turns}$$

Calculate to make sure windings will fit the winding area of coil former. The Ferroxcube data sheet provides information for 8-pin coil former and specifies winding area of 27mm².

The fill factor has to be taken into consideration as this will affect winding area for this coil former. In general we can use fill factor K_u of 0.3 to 0.7 as a starting point. In this case 0.3 will be selected.

Total Winding Area $= \frac{1}{K_u} \cdot [(N_{pri} \cdot A_{w_pri}) + (N_{sec} \cdot A_{w_sec}) + (N_{aux} \cdot A_{w_aux})] \leq 27\text{mm}^2$

Total Winding Area $\approx 3.33 \cdot [(122 \cdot 0.0355\text{mm}^2) + (20 \cdot 0.136\text{mm}^2) + (18 \cdot 0.0081\text{mm}^2)] \leq 27\text{mm}^2$

Total Winding Area $\approx 24\text{mm}^2 \leq 27\text{mm}^2$

Note: The total winding area should not be exceeded due to the selection of approximate standard wire gauges from Table 1: Wire Gauge Table.
3.7 Flyback Transformer Construction

The transformer block diagram shows the primary split into two sections of 61 turns each. The secondary and auxiliary are wound between the two primary windings. The transformer stack-up has three layers of insulation tape between the primary and the secondary side. This method enables the transformer to pass the safety standard for electrical strength requirement. In the previous step, we selected an air gap of 0.3mm as our starting point. The air gap is critical because it allows the transformer to extend its maximum saturation; however, if the gap is larger, then it could contribute to higher leakage inductance. In this example, it is possible to achieve a leakage inductance less than 2% of primary.